Products

 

Organopalladium chemistry has found widespread use in organic synthesis. Palladium catalysts facilitate unique transformations that cannot be readily achieved using classical techniques, and in many cases palladium-catalyzed reactions proceed under mild reaction conditions and tolerate a broad array of functional groups. As such, the use of palladium catalysts for the synthesis of important, biologically active heterocyclic compounds has been the focus of a considerable amount of research. This chapter describes the fundamentals of palladium catalysis in the context of heterocyclic chemistry, including the basic mechanisms of many useful transformations along with a number of new synthetic and mechanistic developments. The majority of the Pd-catalyzed reactions proceed via catalytic cycles that are comprised of eight fundamental organopalladium transformations presented in the chapter. Most of these transformations can occur via more than one mechanistic pathway. Palladium chemistry involving heterocycles has many unique characteristics stemming from the inherently different structural and electronic properties of heterocyclic molecules in comparison to the corresponding aromatic carbocycles.

 

 

Ligand screening

Virtual screening (VS) is a computational technique used in drug discovery to search libraries of small molecules in order to identify those structures which are most likely to bind to a drug target, typically a proteinreceptor or enzyme.[2][3]

Virtual screening has been defined as the "automatically evaluating very large libraries of compounds" using computer programs.[4] As this definition suggests, VS has largely been a numbers game focusing on how the enormous chemical space of over 1060 conceivable compounds[5] can be filtered to a manageable number that can be synthesized, purchased, and tested. Although searching the entire chemical universe may be a theoretically interesting problem, more practical VS scenarios focus on designing and optimizing targeted combinatorial libraries and enriching libraries of available compounds from in-house compound repositories or vendor offerings. As the accuracy of the method has increased, virtual screening has become an integral part of the drug discovery process.[6][1] Virtual Screening can be used to select in house database compounds for screening, choose compounds that can be purchased externally, and to choose which compound should be synthesized next.

Base, solvent and temperature screening

Virtual screening (VS) is a computational technique used in drug discovery to search libraries of small molecules in order to identify those structures which are most likely to bind to a drug target, typically a proteinreceptor or enzyme.[2][3]

Virtual screening has been defined as the "automatically evaluating very large libraries of compounds" using computer programs.[4] As this definition suggests, VS has largely been a numbers game focusing on how the enormous chemical space of over 1060 conceivable compounds[5] can be filtered to a manageable number that can be synthesized, purchased, and tested. Although searching the entire chemical universe may be a theoretically interesting problem, more practical VS scenarios focus on designing and optimizing targeted combinatorial libraries and enriching libraries of available compounds from in-house compound repositories or vendor offerings. As the accuracy of the method has increased, virtual screening has become an integral part of the drug discovery process.[6][1] Virtual Screening can be used to select in house database compounds for screening, choose compounds that can be purchased externally, and to choose which compound should be synthesized next.