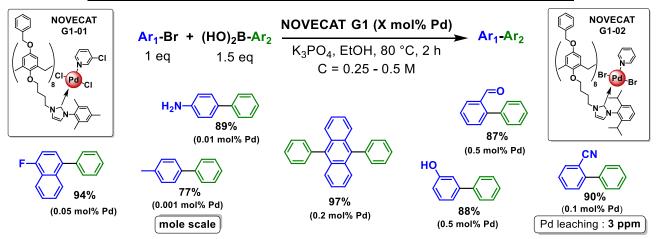

Supported catalysts for fine chemistry

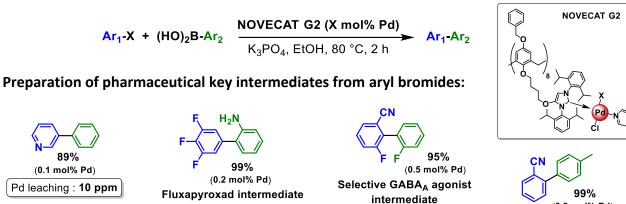
NOVECAL is a French company specialized in the design and synthesis of cyclic oligomers, and of related supported catalysts. Our palladium-NHC catalysts show excellent efficiency in Suzuki C-C and Buchwald-Hartwig C-N cross coupling reactions along with a low metal leaching inside products after filtration. We are currently developing rhodium-phosphine supported catalysts for hydrogenation, cobalt-salen supported complexes for the opening of epoxides, and copper-phosphine supported complexes for C-X couplings.

We also offer our expertise in various fields of catalysis:

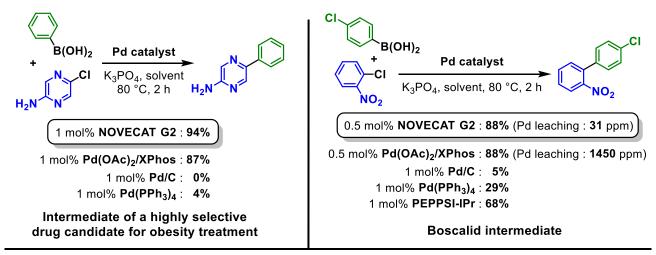
- Cost optimization (catalysts screening and loading optimization, study and optimization of process parameters...)
- Custom catalysts heterogenization
- Realization and optimization of challenging reactions


Structure of NOVECAL catalysts

General properties of NOVECAL catalysts


- Efficient at low catalytic loading
- Low metal leaching after simple filtration
- Robust structure, including high and reproducible metal content
- Air stable and easy to handle
- Compatible with diluted or concentrated reaction mixtures
- Soluble in polar solvents >> easy washing of the process equipment

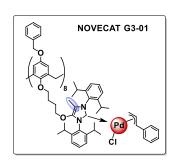
Suzuki cross-coupling reaction with NOVECAT G1



For publications on those results, see: a) Dalton Trans. 2018, 47, 13843; b) React. Chem. Eng. 2020, 5, 1509.

Suzuki cross-coupling reaction with NOVECAT G2

Comparison of Pd catalysts with functionalized aryl chlorides:



Synthesis of Valsartan intermediate in water using very low catalytic loading:

(0.2 mol% Pd)
Valsartan intermediate

Buchwald-Hartwig C-N coupling

Screening of solvents with an aliphatic amine:

4

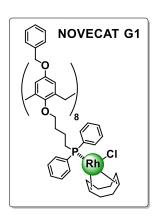
Solvent	Yield (%)	Pd content after filtration (ppm)		
MeTHF	99	24.5		
Dioxane	99	25		
СРМЕ	93	38		
Methylcyclohexane (0.2 mol% Pd)	97	9		
Toluene (0.2 mol% Pd)	99	43		

Synthesis of a model intermediate for RORc Inhibitor GDC-0022:

Preparation of Brexpiprazole's key intermediate:

0.5 mol% Pd₂(dba)₃•CHCl₃/BINAP : 99% (Pd leaching : 520 ppm)

Coupling with aromatic amines:


Asymmetric epoxide ring-opening

Product	Co (mol%)	Conversion (%)	e.e. (%)	[Co] _{Product} (ppm)	Co eliminated (%)
″он	2	100	76	-	-
Br OH	1	100	94	0.7	99.98

Recycling experiments performed on asymmetric epibromohydrin ring-opening:

Product	Cycles	Co (mol%)	Conversion (%)	e.e. (%)
Br OH	Cycle 1	2	100	94
ÔН	Cycle 2	2	100	94

Hydrogenation reaction

Rh (mol%)	т (°С)	t (h)	Conversion (%)		
0.05	100	2	100	> 95%	
0.3	25	72	100		> 92%

Residual metal content inside products after filtration (leaching)

Substrate	Rh (mol%)	T (°C)	t (h)	Conversion (%)	Residual metal content (ppm)
	0.05	100	3	100	2.4
	0.3	25	49	98	6.2