

Supported catalysts for fine chemistry

NOVECAL is a French startup specialized in the design and synthesis of cyclic oligomers, and of related supported catalysts. Our palladium-NHC catalysts show excellent efficiency in Suzuki C-C and Buchwald-Hartwig C-N cross coupling reactions along with a low metal leaching inside products after filtration. We are currently developing rhodium-phosphine supported catalysts for hydrogenation, and cobalt-salen supported complexes for the opening of epoxides.

We also offer our expertise in various fields of catalysis:

- Cost optimization (catalysts screening and loading optimization, study and optimization of process parameters...)
- Custom catalysts heterogenization
- Realization and optimization of challenging reactions

Structure of NOVECAL catalysts

Suzuki coupling with challenging aryl halides challenging substrates

General properties of NOVECAL catalysts

- Efficient at low catalytic loading -
- Low metal leaching after simple filtration -
- Robust structure, including high and reproducible metal content _
- Air stable and easy to handle -
- Compatible with diluted or concentrated reaction mixtures _
- Soluble in polar solvents >> easy washing of the process equipment -

Suzuki cross-coupling reaction with NOVECAT G1

For publications on those results, see: a) Dalton Trans. 2018, 47, 13843; b) React. Chem. Eng. 2020, 5, 1509.

Suzuki cross-coupling reaction with NOVECAT G2

Advantages of NOVECAT catalysts for Suzuki C-C coupling:

- Efficient with a wide range of substrates
- Low catalytic amount required
- Low leaching levels after simple filtration
- Performant with both aryl chlorides and bromides

Buchwald-Hartwig C-N coupling

Screening of solvents with an aliphatic amine:

Solvent	Yield (%)	Pd content after filtration (ppm)
MeTHF	99	24.5
Dioxane	99	25
CPME	93	38
Toluene	82	-
Methylcyclohexane* (1 mol% Pd)	95	30

Application for the preparation of Brexpiprazole's key intermediate:

Advantages of NOVECAL catalysts for Buchwald C-N coupling:

- Low catalytic loadings
- Low leaching after simple filtration
- Compatible with various attractive solvents for industry
- Procedure applicable to both aryl chlorides and bromides
- Efficient with chelating amines
- Easy washing of the equipment at the end of the reaction

Product	Co (mol%)	Conversion (%)	e.e. (%)	[Co] _{Product} (ppm)	Co eliminated (%)
ОН	2	100	76	-	-
Br OH OH	1	100	94	0.7	99.98

Recycling experiments performed on asymmetric epibromohydrin ring-opening:

Product	Cycles	Co (mol%)	Conversion (%)	e.e. (%)
Br OH	Cycle 1	2	100	94
	Cycle 2	2	100	94

Hydrogenation reaction

Rh (mol%)	т (°С)	t (h)	Conversion (%)		o
0.05	100	2	100	> 95%	
0.3	25	72	100		> 92%

Residual metal content inside products after filtration (leaching)

Substrate	Rh (mol%)	T (°C)	t (h)	Conversion (%)	Residual metal content (ppm)
O III	0.05	100	3	100	2.4
	0.3	25	49	98	6.2